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Abstract. To detect rolling element bearing defects, many researches have been focused on Motor Current Signal Analysis
(MCSA) using spectral analysis and wavelet transform. This paper presents a new approach for rolling element bearings
diagnosis without slip estimation, based on the wavelet packet decomposition (WPD) and the Hilbert transform. Specifically,
the Hilbert transform first extracts the envelope of the motor current signal, which contains bearings fault-related frequency
information. Subsequently, the envelope signal is adaptively decomposed into a number of frequency bands by the WPD
algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the frequency band
selection. Experimental studies have confirmed that the proposed approach is effective in diagnosing rolling element bearing
faults for improved induction motor condition monitoring and damage assessment.

1. Introduction

In order to ensure the availability of industrial systems
and the safety of goods and persons, the monitoring and
diagnosis of bearing defects are of prime importance.
Thus, defect detection in rolling elements bearings
has been the subject of extensive researches. Different
experimental methods have been proposed for detection
and diagnosis of bearings which may be broadly classified
as vibration and acoustic measurements [1], temperature
measurements, defect signatures in the stator current of
motors, wear debris and lubricant analysis. More recent
studies on induction motors concentrate on monitoring
electrical signals such as stator current, because the
vibration produced by defects is also modulated on the
stator current. Many methods are proposed for diagnosing
bearing faults using stator current. The Fast Fourier
Transform (FFT) is a standard method for observing
signals in the frequency domain and has been widely
studied. In spite of its earlier popularity, Fourier transform
presents certain serious theoretical drawbacks in signal
processing because the time-frequency information is
lost. Wavelet analysis overcomes the drawbacks of
Fourier methods and permits adaptive time–frequency
representation [2]. For example, Gong et al. [3] have
shown that the wavelet analysis is more sensitive and
reliable than the Fourier analysis for recognizing the tool
wear states in turning. Pan et al. [4] also checked the
robustness of the wavelet transform method compared
to the spectra method of FFT. The signal processing
approaches that deal with non-stationary signals are more
appropriate for process monitoring [5]. In this research,
an outer race bearing defect is detected using the stator
current analysis. The Hilbert transform first extracts the
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envelope of the motor current signal, which contains
bearings fault-related frequency information [6,7]. Then,
the envelope signal is adaptively decomposed into a
number of frequency bands by Meyer wavelet in the
wavelet packet structure, with energy comparison as the
fault index [8]. Finally, spectra of the selected bands are
compared between those obtained by the normal WPD and
those obtained by the proposed method.

2. Theoretical study
2.1. Discrete wavelet transform (DWT) and
wavelet packet decomposition (WPD)

Continuous wavelet transforms are recognized as effective
tools for both stationary and non-stationary signals.
However, they involve much redundant information
and are computationally very slow. Discrete wavelet
transforms were developed by Mallat with fast algorithm
based on the conjugate quadratic filters (CQF) [9]. Wavelet
and scaling functions at different scales are generated from
a single scaling function �(t) with two-scale difference
equations [10]:

�(t) =
√

2
∑

k

h(k)�(2t − k) (1)

ψ(t) =
√

2
∑

k

g(k)�(2t − k) (2)

where g(k) = (−1)k h(1 − k), and the h(k) and g(k) are
viewed as filter coefficients of low-pass and high-pass
filters, and l is the filter length. �(t) and ψ(t) are scaling
and wavelet functions at scale j = 1, respectively.

In an orthogonal wavelet expansion, a set of recursive
relationships governs scaling and wavelet coefficients at
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Figure 1. The diagram three-level wavelet packet decomposition
tree.

different scales and translations as follows:

c j,k =
∑

l

hl−2kc j+1,l (3)

d j,k =
∑

l

gl−2kc j+1,l (4)

where c j,k , d j,k are scaling and wavelet coefficients derived
from the projection of the signal onto the space of scaling
� j,k(t) and wavelet functions ψ j,k(t), respectively.

The DWT leads to a loss of useful information at
high frequency because successive details are no longer
analyzed. We need to double the sampling rate for
higher frequency analysis, which however involves more
data and computation. Wavelet packet decomposition
[11] is a generalization of wavelet decomposition at
higher frequencies. In the wavelet packet decomposition,
each approximate and detail coefficients are recursively
decomposed. Normally, the frequency localization of
wavelet packets is very difficult to analyse. The Fourier
transform of Eqs. (5) and (6) proves that the Fourier
transform of wavelet packet basis is related to its mother
by:

W j
2n =

√
2
∑

k

h(k)Wn(2t − k) (5)

W j
2n+1 =

√
2
∑

k

g(k)Wn(2t − k) (6)

where the functions W0 and W1 are set to the scaling
function f (x) and the mother wavelet function ψ(x),
respectively.

The implementation of the wavelet packets leads to
a tree-structured decomposition, thereby implying that
both the outputs of the low-pass and high-pass filters are
recursively decomposed. The energy of W p

j is mostly
concentrated over a frequency band, and two filters h(2 jw)
and g(2 jw) select lower or higher frequency components
within this band respectively. Coefficient energy at each
node is computed by:

E =

(∑M
k=1 (d p

j (k))
2

M

)1/2

(7)

where M is the number of samples at the node, d is the
WPT coefficients.

The resulting three-scale analysis tree (three-stage tree)
is illustrated in Fig. 1. Fs is the frequency sampling.

2.2. Proposed diagnosis method

Motor current induced by the bearing defect is modulated
by the supply voltage frequency and the envelope of

Figure 2. The diagram of the WPD based diagnosis method.

Figure 3. The simulation signal.

the current signal contains the defect and fault-related
frequencies. Thus the defect identification process can be
achieved through a multi-step signal decomposition and
feature extraction process, as illustrated in Fig. 2. The
envelope of the signal is first extracted using a digital band-
pass filter and Hilbert transform. Next, the envelope signal
is decomposed through the WPD. Two criteria based on
the energy and correlation analyses have been investigated
to select the bands which contain bearings fault-related
frequency information. The bands that are most correlated
with the defect features are chosen for the Hilbert spectrum
analysis.

To evaluate the effectiveness of the Hilbert Envelope,
a motor current signal is constructed for numerical
simulations. The line current signal is modulated by both
the supply frequency and fault-related frequencies.

I (t) = cos(2π f t)[1 + 0.1 cos(2π (2c f )t)

+ 0.1 cos(2π (4c f )t + 0.1 cos(2π (6c f )t)]. (8)

Here, c, slip of the motor, has the assumed value of 0.03,
and supply frequency f is set as 60 Hz (America).

The simulated signal (Fig. 3) shows repetitive impacts
[12] and its spectrum are displayed in Fig. 4, from which
it is seen that a zoom on spectral analysis of the signal
shows the main frequency (60 Hz) modulated by 3.6 Hz
(2cf). These modulation frequencies are 49.2 Hz, 52.8 Hz,
56.4 Hz, 63.6 Hz, 67.2 Hz, and 70.8 Hz. It is then more
difficult in revealing fault related frequencies.

The Hilbert envelop of the signal is shown in
Fig. 5a. On the Fourier spectrum of the Hilbert envelope
(Fig. 5b), we can see the frequency components at 3.6 Hz,
7.2 Hz, and 10.8 Hz are dominant. These are related
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Figure 4. The simulated signal spectrum.

Figure 5. Hilbert envelope of the simulation signal (a) and its
spectrum (b).

Figure 6. Test bench.

to the 2cf, 4cf, and 6cf fault frequencies known in the
synthetic signal.

3. Experimental results
In this study, the rolling bearings used are bearings double
row ball (SKF, 1210 EKTN9). The data acquisition of
experimental signals was made from a bench having a shaft
supported by two bearings, a healthy one and an artificially
damaged one (Fig. 6). The motor is alimented by 380 V,
30 Hz and different shaft speeds were applied but we only
present the 900 rpm case ( fr = 15 Hz) in this study. We
investigated a fault on the outer race of the bearing. The
stored stator current was used as a baseline while bearing

Table 1. Characteristic vibration frequency and modulation effect
on the stator current.

fa Fr Modulation effect on stator Related
current nodes
|fa-BPFO| = 86.6 Hz (11 – 04)

30 Hz 15 Hz |fa-BPFO| = 146.6 Hz (11 – 10)
|fa-BPFO| = 203.26 Hz (11 – 25)
|fa-BPFO| = 263.26 Hz (11 – 29)

Figure 7. Stator current spectrum: blue line of healthy bearing;
red line the bearing with a spall in the outer race.

was in a healthy condition. In a second experiment, a
1.06 mm spall was drilled on the outer race as a defect.
The localized defect was created on the outer race by
using an electric discharge machine to keep their size and
depth under control. Three signals were conducted for all
tests and averaged to evaluate the ability of the proposed
method. The characteristic vibration frequency of the outer
race defect was computed to BPFO = 116.6 Hz. Since
mechanical vibrations produce anomalies in the air gap
flux density, they result in the modulation of stator current.
These frequencies can be calculated by [13]:

fbng = | fa ± m. fv| (9)

where m = 1, 2, 3, . . . and fa is the electrical power supply
frequency and fv is one of the characteristic vibration
frequencies which represents the BPFO (in our case) and
the modulated frequency on stator current is derived by (9),
as shown in Table 1.

In all these tests, the machine was connected to a line
directly, and the stator current was sampled at Fs = 48 kHz
before and after defects were made. Figure 7 shows the
average periodogram of signals with a sample number of
240 000. As seen in Fig. 7, it is very difficult to detect
the defect by using conventional spectral analysis (small
variation of amplitude).

The stator current envelope was then analysed with
the wavelet packets transform method. In the first step,
the stator current is decomposed into 11 levels for a good
resolution. Therefore, we have 211 nodes at the ending
level for which the frequency resolution is 11.72 Hz. In our
case, the DMeyer wavelet was applied for better resolution
[14]. Afterwards the energy is computed at all nodes.
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Table 2. Energy comparison around 86.6 Hz (outer race defect
frequency).

Condition
Frequency range

Node (11 – 5)
(70.31–
82.03Hz)

Node (11 – 4)
(82.03–
93.75Hz)

Node (11 – 12)
(93.75–
105.46Hz)

Healthy 0.47 0.22 2.17
Outer race
defect

0.9 5.16 2.38

Table 3. Energy comparison around 146.6 Hz (outer race defect
frequency).

Condition
Frequency range

Node (11 – 14)
(128.9–140.6 Hz)

Node (11 – 10)
(140.6–
152.3 Hz)

Node (11 –11 )
(152.3–164.1 Hz)

Healthy 0.023 0.016 0.17
Outer race
defect

0.23 0.84 0.28

Table 4. Energy comparison around 203.26 Hz (outer race defect
frequency).

Condition
Frequency range

Node (11 –24)
(128.9–140.6 Hz)

Node (11 – 25)
(199.2–
210.9 Hz)

Node (11 –27 )
(210.9–
222.6 Hz)

Healthy 0.013 0.014 0.014
Outer race
defect

0.17 0.27 0.29

Table 5. Energy comparison around 263.26 Hz (outer race defect
frequency).

Condition
Frequency range

Node (11 –24)
(246.1–
257.8 Hz)

Node (11 – 29)
(257.8–269.5 Hz)

Node (11 –28 )
(269.5–
281.2 Hz)

Healthy 0.007 0.044 0.004
Outer race
defect

0.100 0.053 0.058

3.1. Energy comparison

In Table 2, the energy is compared around the outer
race defect frequency (116.6 Hz − 30 Hz = 86.6 Hz) for
the two cases, healthy and defective bearing. The largest
energy is related to the node (11 – 4). As can be seen
from this table, energy is increased for other cases. This
is caused by the modulation effect of sidebands which is a
feature characteristic of a defect in rotating machinery.

Examining the Table 3, the energy is compared around
146.6 Hz (116.6 Hz + 30 Hz). Since the bearing has an
incipient outer race defect, the energy is slightly increased.
As expected, the increase of energy is better viewed in this
concerning node (11 – 10).

Energy variations around 203.26 Hz and 263.26 related
to the outer race defect are shown in Tables 4 and 5
respectively.

In comparison with Table 2, it is observed that the
energy increase happened around these frequencies, in

Figure 8. Energy spectra of the band around 86.6 Hz: (a) classical
method; (b) proposed method.

Figure 9. Energy spectra of the band around 146.6 Hz:
(a) classical method; (b) proposed method.

the addition of the increase around 86.6 Hz. This fact is
interpreted as the modulation of stator current by vibration
component as follows: vibration signals of the motor
housing were evaluated using combination of envelope and
WPT methods.

It was noticed that in the vibration spectrum, instead
of a component in BPFO= 116.6 Hz, harmonics of
2 × BPFO, 3∗BPFO . . . etc. were observed which were
modulated in 86.6, 146.6, 203.26 and 263.26 Hz in the
stator current as depicted in Table 1 and calculated by
the Eq. (9). The harmonics of bearing frequency are
characteristic of a defect at the third stage of degradation
(residual life lower than 10%) [15].

3.2. Spectrum comparison

The application of Fourier spectra to the characteristic
narrow frequency bands selected by the WPD can’t allow
for clearly identifying the frequency related to the fault,
while the proposed method reveals all the characteristic
frequency modulated in the current signal envelope, when
WPD is applied to the signal envelope. As Fig. 8 shows,
one can see clearly the component 86.6 Hz in the spectrum
of the proposed method (8b) contrary to the (8a) where it’s
almost completely hidden.

The second component (146.6 Hz) that characterize
also the fault is betrayed by the spectrum shown in
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Fig. 9b. However, a small pic of amplitude at this
frequency is shown in Fig. 9a.

We notify that the same statement is obtained towards
the two other components at their characteristic narrow
bands. This proves the efficiency of the proposed method
to reveal the fault frequencies.

4. Conclusions
In this paper, Wavelet Packet Analysis is used as a
powerful diagnostic method for the detection of incipient
bearing failures via stator current analysis. Hilbert
transform first extracts the envelope of the motor current
signal, which contains bearings fault-related frequency
information. A current signal processing algorithm applied
to electric current signals is proposed as a suitable
alternative to vibration signal to detect bearing faults. The
proposed method presents several advantages over Fourier
analysis. Stator current in nature is non-stationary; and
therefore, wavelet packet transform can provide better
analysis under various conditions. Moreover, the frequency
bands in defect detection are more tolerant due to the fact
that the actual bearing-defect induced vibration frequency
may vary slightly from the predicted values due to
slippage that occurs within bearing [12]. Wavelet packet
transform can cover this range of frequency band. The
proposed method was successfully verified through outer
race bearing defect detection.
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[9] S.G. Mallat, A Wavelet Tour of Signal Processing,

Second Ed., Academic Press, New York (1999)
[10] I. Daubechies, The wavelet transformation, time–

frequency localization and signal analysis, IEEE
Transactions on Information Theory 36 (1990),
961–1005

[11] L. Eren, and M. J. Devaney, Bearing Damage
Detection via Wavelet Packet Decomposition of the
Stator Current, Transactions on instrumentation and
measurement, 53, 2 (2004), pp. 431–436

[12] Badri B., Thomas M. and Sassi S., A shock filter
for bearing slipping detection and multiple damage
diagnosis, International Journal of Mechanics, 5, 4
(July 2011) 318–326

[13] M. Blodt, D. Bonacci, J. Regnier, M. Chabert and
J. Faucher. On-line Monitoring of Mechanical Faults
in Variable-Speed Induction Motor Drives Using the
Wigner Distribution. IEEE Transactions on Industrial
Electronics, 55, 2 (2008), pp. 522–533

[14] Yan Long, Liu Gang and Guo Jun, Selection of the
best wavelet base for speech signal, Proceedings of
IMVSP, 20-22 Oct. 2004. IEEE conference ISBN:0-
7803-8687-6

[15] Marc Thomas, Reliability, predictive maintenance
and machines vibrations. (In french), Presses de
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